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Abstract 

In the context of precision medicine cancer treatment, liquid biopsy is emerging as a 

revolutionary and critical new tool. In precision medicine, physician’s decisions are guided by 

the genetic profile of a patient and their tumor. Liquid biopsy is the sequencing and analysis of 

cell-free circulating DNA (cfDNA). This DNA is not bound to a particular cell, rather is found in 

various bodily fluids including the bloodstream. In cancer patients, cfDNA partially consists of 

circulating tumor DNA (ctDNA), tumor DNA that has been shed into the blood. ctDNA in the 

blood is a promising biomarker in the blood for detection of cancer below the surface of clinical 

detection levels. This applies both for early detection of cancer and for “surveillance”: tracking 

the response of patients to treatments and by extension, for identifying patients with high risk of 

treatment failure. However, current cfDNA protocols have a lower limit of detection far above 

the clinical need. These methods lack both the sensitivity and specificity to be applicable in the 

clinical setting yet due to various sources of error in DNA extraction, sequencing, and alysis 

protocols. These errors increase false positive detection, which in turn make the detection of 

trace amounts of tumor DNA within the vast set of cfDNA impossible.  

We focused our analysis on various forms of errors, classifying the possible errors 

leading to noise into four broad categories. These are general and often overlapping, but help to 

describe the sources of noise in cell-free DNA analysis, which must be filtered out in order to 

improve detection methods in ctDNA. In order to determine if these noise detections were 

random or had some inherent bias, we set up a mathematical model and a synthetic experiment to 

confidently identify and predict which sites would be found outside of our random expectation. 

We compared this to our experimental data and found very prominent bias in noise detections for 

specific sites. Using this knowledge, we analyzed differences between “clean” and “noisy” sites, 

which are sites that rarely carry errors or often carry errors, respectively. We examined the 

features of noisy sites and propose future directions towards the the development of a neural 

network framework to train a model based on these features to predict a ‘noise score’ for a given 

site.  

  

 

  



Intro & Background 

Precision medicine is the approach of selectively tailoring treatments to a specific 

patient’s disease. In the context of cancer, precision medicine is emerging as a critical tool for 

clinicians. The genetic profile of a patient and their tumor can be used to guide and inform 

treatment. (Ignatiadis et al., 2014) 

The traditional method for evaluating tumor biology is tissue biopsy, which involves 

surgically removing a sample of tumorous cells and evaluating the sample’s histological or 

genetic profile. However, biopsies are inherently invasive procedures that are expensive and 

often come with high risks to patient health. In some cases, a biopsy might not be an option for 

the patient due to either inaccessibility of the tumor or other health-related conditions. Similarly, 

repeated use of imaging techniques such as CT scans can pose a risk to patient health due to 

radiation exposure (Johnson et al., 2014). Additionally, although these techniques do give a 

holistic representation of the patient’s disease progression, they do not provide clinicians with 

insight into the underlying biology of cancer. To gain insight to a patient’s response to treatment 

and track the evolution of their tumor over time, imaging and tissue biopsy be impractical to 

carry out tissue biopsies on a recurrent basis.  

A relatively recent development in precision medicine to track tumor evolution is liquid 

biopsy. Liquid biopsy is the sequencing and analysis of tumor information detectable in the 

blood and other body fluids through non-invasive means. Upon cell death, tumors shed this 

information in the form of cell-free circulating tumor DNA (ctDNA), which is not bound to a 

particular cell but can be found in various bodily fluids including the bloodstream (Ma et al., 

2015). This process holds great promise for the detection and analysis ctDNA for precision 

medicine treatment of cancer. 

 

  



The field of liquid biopsy is 

broad, with a wide array of biomarkers 

used to detect and measure tumor 

presence in a patient's bloodstream. In 

some rare cancers, specific protein 

biomarkers have been benchmarked, for 

example the PSA test used in prostate 

cancer (Saini 2016). However, in most 

cases, such proteins do not exist. Much 

ongoing research focuses on developing 

tests for DNA, RNA, or circulating 

tumor cells.  

The clinical applications of these 

tests can be classified into two distinct 

classes. One of such applications 

involving ctDNA in the clinical setting 

involves detecting cancerous tumors in 

early-stage patients with improved risk assessment (Figure 1).  In this setting, ctDNA tests can 

be used for at-risk patient populations to detect cancer earlier, and lead to better outcomes. There 

is a distinct need for screening in these populations; the United States Preventative Service 

Taskforce concluded from a study that all individuals from age 55-80 with an extensive smoking 

history should be screened by CT due to their high risk for cancer and the improved outcomes of 

early detection. However, the American Academy of Family Physicians warns that due to the 

unknown risk of exposure to radiation associated with CT they cannot conclusively support this 

recommendation (AAFP 2013). Therefore, there is a strong need for alternative screening 

methods without medical risks to the wellbeing of healthy individuals. For instance, almost half 

of all patients with stage I cancer, which is almost always curable through surgery alone, 

exhibited detectable levels of ctDNA and more than two-thirds of patients with stage III, which 

is also curable in many cases did the same as well (Bettegowda et al., 2014). These results prove 

to be already extremely promising in early detection and further advancements in detecting 

ctDNA could completely change the convention of cancer detection (Babayan et al., 2018).  

Figure 1 | Procedure for cfDNA for Early 

Detection 

Early detection refers to finding cancer in a patient as 

soon as possible, in some cases even before it would 

be able to be detected on a CT scan. First, blood 

plasma is collected from patients in a non-invasive 

manner. If the plasma shows indications of ctDNA, 

then a thorough biopsy would be taken, to confirm the 

suspicions of the patient having a tumor. In the 

plasma collection process, the higher sensitivity has 

the potential to help create enormous breakthroughs in 

clinical outcomes by detecting cancer much earlier.  



 

ctDNA can also prove to 

be a promising biomarker in 

tracking the response of patients 

to treatments and by extension, 

identifying patients with a high 

risk of treatment failure. 

Disease recurrence is common, 

found in up to 40% of patients, 

with many being incurable, 

especially in tumors that 

progress earlier. ctDNA shows 

promise as a reliable biomarker 

to detect diseases below the 

surface of clinical detection 

levels and offers further long-

term survival potential. Patients 

whose tumor cells at the point 

of dying release their DNA into the bloodstream as detectable ctDNA had a risk ratio of 228:1 

compared to patients with undetectable ctDNA for disease progression (Roschewski et al., 2015). 

However, detection of ctDNA is limited using existing technologies. Current state of the 

art methods do not yet have the sensitivity and specificity to be useful in the clinical setting. This 

is caused in part by errors in cfDNA protocols, which create a lower limit of detection that is far 

above the clinical need. These errors increase false positives, which in turn make the detection of 

trace amounts of tumor DNA impossible. We classify errors into four broad categories. These are 

general and often overlapping, but help to describe the sources of noise in cell-free DNA 

analysis.   

Figure 2 | Procedure for cfDNA for Treatment 

Monitoring or “Surveillance” 

This schematic shows doctors using cfDNA to monitor a 

patient that is already being treated. A possible alternative to 

this would be taking many CT scans of patients. However, 

this is first of all unsafe due to the radiation it subjects onto 

people, resulting in the procedure needed a large grace 

period before repetitions. A non-invasive blood test as liquid 

biopsy gives clinicians treating patients a way to see if 

patients are responding to treatment or if disease is recurring. 

To find traces of patient A’s tumor in patient A’s blood, 

clinicians could search patient A’s cfDNA for single reads of 

mutations that match mutations found in patient A’s tumor.  



 
First, there are errors in bioinformatic analysis of genetic data. These errors can occur in 

various parts of the pipeline, including during alignment and in mutation calling. Since the 

underlying nature of genetic information analysis involves large amounts of data, in many cases 

heuristic approaches that are needed for analysis necessarily lead to error (Saeys et al., 2007).  

Second, are sequencing errors. When a fragment of DNA is being sequenced it can 

undergo errors such as reading incorrect bases or contamination from adapters attached to each 

fragment for sequencing. Duplex sequencing, UMIs, and base confidence scores are sometimes 

used to reduce this errors type of error. Existing deep learning methods have been used to learn 

patterns of error in sequencing, particularly for application in cell-free DNA (Kothen-Hill et al., 

2018). Such methods identify specific mutations that are likely to be errors and remove them 

from the data.  

Third are biochemical errors. PCR errors, sample contamination, or in-vitro DNA 

damage can cause random or systematic errors in sequencing data. Similar to sequencing errors, 

methods such as consensus UMI tests can be used to correct biochemical errors. 

Lastly, are biological errors. A source of noise derived from pure biological error 

includes random mutations over age. As we age, our normal tissue progressively undergo. One 

example was a recent study looking at TP53 mutations (Salk et al., 2018). TP53 is a classical 

tumor mutation, studied broadly across many cancer types. However, low-frequency TP53 

mutations were found to exist in healthy tissues from individuals of all ages, from infants to 

elders and found commonly throughout healthy tissues. The findings show that these mutations 

are also found to progressively increase in abundance with age. Due to its nonrandom and 

positively selected trends in mutations over time, TP53 mutations are found to be similar to that 

of cancer mutations. Similar work has been done in other diseases, such as the finding of Clonal 



Hematopoiesis of Indeterminate Potential (CHIP), which showed massive clonal selection in B 

cells of patients that do not have the disease (Steensma 2015). Therefore, even without 

bioinformatic or sequencing errors, true biological mutations in healthy individuals create a 

further layer of noise that presents a challenge to sensitive detection in circulating tumor DNA 

within cell-free DNA.  

We set out to define if patterns of errors in cell-free cirulating DNA were random or 

systematic, and characterize the noise found in cfDNA sequencing. 

 

 

  



Methods 

Synthetic Methodology 

First, we wanted to 

identify if the noise detected 

in whole genome sequencing 

of cell-free DNA was random 

or systematic. We compiled a 

list of sites using tissue 

biopsies from 12 lung cancer 

patients. These specific 

mutations constituted sites 

that could be searched for in 

cfDNA, particularly in the 

disease monitoring context of 

the patient from which the 

tumor was resected. 

Therefore, all subsequent 

analysis was done using these 

sites. In total, there were 

585,517 mutations called.  

Due to the extremely 

low variant allele fraction of 

tumor DNA in total cfDNA 

found in circulation, mutation 

calling in cell-free DNA is 

done with just a single mutated read, as compared to tumor tissue samples where mutations are 

called by finding sites at which the tumor sample has many mutated reads. We checked the 

mutations found in the 12 lung cancer patients against whole genome sequencing data of 10 

healthy patients. A mutation was called at any site where the normal cfDNA contained the 

mutations using the same a single read. All of the mutations detected could be defined as ‘noise’, 

Figure 4 | 

Collection of 

tissue 

samples from 

patients and 

the number 

of detections 

in the master 

tumor sites 

file in 

relation to 

the healthy 

plasmas/ 

error sets 

Tissue samples were collected from 12 patients with lung 

cancer via a biopsy and from 10 healthy patients via liquid 

biopsy. Each Healthy Plasma/Error Set is an experimentally 

detected subset of the Tumor Sites shown on the leftmost 

column. This data consists of sites that were detected in the 

blood of healthy individuals which represents sites with 

errors in sequencing or other analyses. We assessed the 

likelihood of randomly selected sites in tumor sites 

appearing in multiple noise sets by comparing relative sizes 

of each of the sets to the much larger tumor sites set. To put 

into perspective, the tumor sites set was approximately 100 

times larger than each of the error sets. Thus, we 

hypothesized that the assessed probability of a site 

appearing in multiple error sets would be very low.  
 



since it is known (with near certainty) that they did not originate from a tumor. In each of the 

healthy patients, we detected between 4805 and 8599 of the normal sites.  

Each set of sites detected in a healthy patient’s cfDNA was a subset of the full 585,517 

total tumor derived mutations. In order to determine if these noise detections were random or had 

some inherent bias, we set up a mathematical model to predict the number of normal subsets a 

site would be detected in. This mathematical model is essentially a sampling problem, with the 

total tumor sites being a large pool from which we are drawing subsets.  

Essentially, we are trying to detect the tumor sites from the biopsy within the midst of all 

the cfDNA found in the liquid biopsy, which we would record as ctDNA. However, the ratio of 

ctDNA to cfDNA is very low, leading to many healthy sites being recorded, even in some cases 

as tumor sites. These sites are referred to as ‘noisy’ because they are detected as false positive 

data. In other words, these sites are detected as cancerous despite no cancer actually developing 

and in some cases, some have the characteristics of healthy mutations found in a subset of 

healthy patient sites. 

 

  



Mathematical Model 

Before conducting analysis using patient data, we made a mathematical model that 

implements a nested binomial distribution to find the distribution of probabilities for finding a 

number of given sites within a number of control sets. In general terms, a binomial distribution 

takes in two parameters and returns the discrete probability distribution of the number of 

‘successes’ in a sequence of trials and a given constant probability of ‘success’ for one trial. A 

trivial example of this is a fair coin toss, where the probabilities of getting either heads or tails 

are the same throughout. To elaborate, we define an arbitrary variable, X as the number of heads 

(in this case 3) we want to find the probability for from flipping a fair coin 5 times. The 

probability of getting three heads out of five tosses is the combination of all possible ways to get 

the three heads (TTHHH, HTHTH, HHHTT, etc.) or C(5, 3), multiplied by the probability of 

getting heads 5 consecutive times, which is the inverse of 2 to the power of 5, or 1/32.  

 

Based on this definition and understanding of binomial distribution, we can see this in the 

context of our experiment:

 



Here, P is the probability distribution of finding m sites within k control sets. One thing to 

immediately note is that P is dependent on q, which is the probability distribution of finding one 

given site in k control sets. Since P is looking at an m number of sites, it needs to account for the 

probability distributions for each site in the set of m, which is why q is needed as a nested 

binomial distribution in this case. However, one major oversight of this model is that in reality, 

not all the sizes of the normal sets are the size, which by extension means that the probability of 

a site being in one normal (or the probability of ‘success’) is NOT the same across trials or 

normal sets. To account for a set of normal set sizes, our model would be much more 

complicated and impractical to write out a more complicated formula involving all combinatorial 

possibilities for each probability (p value).  

Thus, we decided to form our very own synthetic experiment to form a more accurate 

statistical model for the distribution of sites across the normal sets, this time accounting for the 

relative sizes of each set. Instead of one nested binomial draw, as shown in the model above, in 

our synthetic model we do a k number of separate Bernoulli trials, a trial that only returns binary 

output in the form of ‘success’ or ‘failure’, or in our case, whether a site is in a normal set or not.  

Experimental v Synthetic 

Using the sizes of the 

healthy plasma sets, we created 

a synthetic protocol in which 12 

random subsets of synthetic 

tumor sites as “error sets.” For 

confidence, this was repeated 

for 10 iterations. 

With the synthetic error 

sets, we ran analyses to find the 

frequencies of each tumor site in 

each of the sets. We evaluated 

each site in the master tumor 

sites set and checked how many 

Figure 5 | Procedure for cfDNA for Treatment 

Monitoring or “Surveillance” 

This figure was generated from two sets of data as signified 

in the legend at the top right. The blue “experimental” data is 

data from healthy control patients and the number of 

detections through each set and those that follow it. On the 

other hand, the orange plot highlights the synthetic error data 

generated from the mathematical model of the synthetic 

protocol. The y-axis signifies the magnitude of tumor sites 

which exist in x number of normal sets, which is 

interchangeable with “error set.” 

 



error sets the site appeared in. Through this, we calculated the frequencies of each tumor site in 

each subsequent error set. Afterward, these frequencies were intersected into one comprehensive 

noise set that detailed the frequencies of tumor sites across multiple sets. We noted that after 

increasing our number of sets to detect in, the frequencies of tumor sites across those decreased 

exponentially. In other words, the likelihood of tumor sites appearing in multiple sets diminished 

drastically. In the figure above, it’s quite notable that in our synthetic model, there were no 

tumor sites that appeared in 5 error sets, yet the experimental model states a different story. It 

illustrates that there were sites at least to the order of magnitude higher than 1 that appeared in 5 

healthy patients. As evident in the figure, there are sites that appear in all 12 healthy patients.    

This analysis is done in order to identify and remove sites that may act as “noise” or 

insignificant data. This is done to improve the validity and credibility for ultimately selecting 

sites that may be in fact linked directly to cancer and not simply a false positive. 

The observed frequency of sites overlapping throughout random error sets decreases and 

likelihood of sites appearing in all 10 of the random error sets would be virtually impossible (as 

illustrated by the plot of synthetic frequencies). Although the experimental data plot follows its 

synthetic counterpart initially, it quickly diverges with enormous differences being observed in 

tumor site frequencies in 5 to 9 error sets. 

We note that the experimental findings show more sites appearing in multiple error sets. 

This disparity between the synthetic and experimental findings is due to certain biases in normal 

sets which makes specific sites in the genome more error prone than others.  



 

Comparing “Clean” and 

“Noisy” Sites 

We then set out to 

analyze the fundamental 

differences between sites 

detected in many normal 

samples as compared to 

sites that were detected in 

zero or very few normal 

samples. First, we 

examined the trinucleotide 

profiles of detected sites. 

The trinucleotide context, 

sometimes called the 

mutational signature, has 

been shown to underlie 

various biochemical or 

biological processes, including the tobacco signature that underlies lung cancer (Alexandrov 

2012). We found a distinct mutational signature in sites that were detected across many normals, 

finding a pervasive C>T pattern. Subsequent work would be needed to determine if this is 

associated with biological, biochemical, sequencing or bioinformatics errors in our methodology.  

 

  

Figure 6 | Trinucleotide Context of Mutations by Base Change 

The top panel represents the trinucleotide context of the full list of 

mutations found in 12 tumors (N=585517). The middle panel shows the 

trinucleotide context of sites that found in 0 or 1 normals (N=574393), 

which reflects the overall pattern of the sample. The bottom panel 

represents sites found in 8, 9, or 10 normal cfDNA samples (N=2549). This 

trinucleotide context is distinct from that found in the overall sample, with a 

much stronger bias towards C>T mutations.  
 



Then, we wanted to determine potential regional patterns of errors across the genome. 

We checked each mutation site from the master tumor list against references pulled from the 

UCSC genome browser. We checked CGI (C-G Islands), LTR (Long Terminal Repeats), Exons, 

Intergenic Regions, B and T 

cell enhancers, and TSS 

(transcription start sites). The 

extensive data for this can be 

found in the supplemental. We 

found that each of these regions 

had a different noise profile. 

This suggests that biological 

sources of noise are potentially 

a source of error. Of note, B 

and T cell enhancers are 

biologically specific to blood 

cells. It is known that non-

tumor cfDNA is predominantly 

made from blood cell DNA. 

Therefore, it is necessary to 

further investigate the potential 

impact of C.H.I.P. on noise rates in ctDNA detection.  

 

  

Figure 7 | Fold change of noisy compared to total detections 

We compared the percent composition of several genomic 

features in “noisy” sites as compared to their percent 

composition in all sites. Notably, promotors for B and T cell 

enhancers were far more represented in noisy sites. Biological 

phenomena, such as Clonal Hematopoiesis, may be a unique 

source of noise that would limit sensitivity and specificity unless 

properly filtered. 



Discussion 

Sensitive mutation calling fundamentally requires a noise model in order to remove noise 

and decrease lower limits of detection (Gerstung et al., 2014). Here, we have begun to 

characterize noise patterns found in whole genome sequencing of cell-free DNA. We classify 

specific mutations in fragments detected through liquid biopsy as either noisy or clean and use 

mathematical modeling and simulation to confidently identify which sites are outside our random 

expectation. Although such a process seems to be viable and with relative accuracy, conducting 

analyses on often such large volumes of data that can be derived from liquid biopsy methods can 

be incredibly computationally expensive as well time consuming. Not to mention, the accuracy 

of some of the features explored here may be susceptible to errors themselves, especially since 

not all the manually selected features may have may be representative of the entire population of 

error-prone sites. As such, utilizing this method of manual algorithmic and computational 

analyses of such data may lead to false positives and other errors in detection. A second possible 

approach would be using deep learning methods to classify specific mutations, based on their 

loci or prevalence in other sites as either being significant or erroneous. A similar approach has 

been used to refind lists of mutations found in primary tumors (Ainscough 2018). Similar 

methods have been trained to refine lists of mutations. Essentially, a neural network would be 

trained with data derived from other biopsy methods to form a comprehensive understanding of 

site characteristics in hopes of ultimately being able to derive a function capable of returning 

results acceptable to a degree when given specific inputs. The method of learning for the network 

would probably be supervised due to the fact that our expected results would be within a discrete 

set of answers: error or possibly tumorous. Alternatively, we could measure the degree to which 

a site is actually cancerous (using a float point value) in which case a linear regression model 

would be needed. There are varying ways that a neural network can be trained to detect errors 

which are mostly determined by the outputs and how the learning method needs to be tweaked to 

prevent bias in the form of overfitting or underfitting.  
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